1. 引言
线面垂直的判定定理是沪教版高中数学教材第十四章“空间直线与平面”第三部分“空间直线与平面位置关系”中的第一节内容。在学习本节内容之前，学生已经具备一定的平面几何知识基础，且学习了空间直线与直线的位置关系、教材以旗杆与地面垂直的例子引入，从而引出线面垂直的定义以及线面垂直判定定理，最后定义了空间中点到平面、线到平面、平面与平面以及异面直线间的距离。教材并未充分揭示线面垂直判定定理的必要性，证明的缺乏也影响了学生对定理的理解。

HPM视角下的数学命题教学旨在充分挖掘数学命题的教育价值，再现命题的自然形成过程，揭示知识之源；又从历史上的数学文献中寻找精彩的证明方法，展示方法之美，营造探究之乐，弥补教材所缺；同时，能够在命题的教学中植入人文元素，凸显文化之魅、达成德育之效。随着HPM实践的深入开展，出现了越来越多的HPM同异构的课例。我们需要对这些课例进行比较研究。

教师A、B就“线面垂直的判定定理”这一课题，各自从HPM的视角设计和实施了教学。他们共享了线面垂直判定定理的有关历史素材，进行了教学设计研讨，教学设计经过了多次的修改。我们关心的是，两位教师是如何选取和运用素材的？数学史在两节课中都体现了哪些价值，以及两节课各有哪些的特色？为了回答上述问题，我们需要运用HPM课例的分析框架，对两节课作出深入的分析和比较，以期为HPM课例的设计与实施提供一定的参考。

2. 线面垂直判定定理的历史素原
线面垂直的定义最早出现在欧几里得的《几何原本》第11卷中，“若一条直线垂直于平面上与该直线相交的所有直线，则该直线与平面垂直。”该卷命题4即为线面垂直的判定定理；“若一直线在另两直线交点处和它们成直角，则此直线与两直线所在平面成直角。”欧几里得利用全等三角形证明了该命题。

18世纪，法国数学家克莱罗（A. Clairaut, 1713-1765）将线面垂直定义为：直线不向平面的任何方向倾斜，对于线面垂直的判定，克莱罗并未严格的证明，仅给出直观的解释：将长方形对折，所折一边形成交于面内垂直于折痕的两条直线，因此折痕与平面垂直。

18世纪，法国数学家勒让德（A. M. Legendre, 1752-1833）在《初等几何》（1794年）中采用了新的证明方法：如图1，直线AC, AD交于点A, AB⊥AC, AB⊥AD, 过点A, 在AC, AD所在平面内任作一条直线AE, 过E作直线E F交AD于点F, 使得EF//AC, 在AD上取点D, 使得 AF=FD, 作DE 并延长, 交AC 于点C, 则DE=EC. 在△ACD中, AC²+AD²=2AE²+2ED², 在△BCD中, BC²+BD²=2BE²+2ED², 于是得: (BC²-AC²)+(BD²-AD²)=2AB²=2(BC²-AC²), 即 AB²=BE²-AC², 故AB⊥AE. 由AE的任意性可知, AB垂直于该平面。

19世纪西方几何教科书中还出现了以下证明。
证法1（等腰三角形法）：如图2所示，直线AC、AD交于点A, AB⊥BC, AB⊥BD, 分别在AC, AD上取点C, D, 使得 AC=AD, 作线CD, 过A作直线AE交CD.
于E点，由斯图尔特定理，$BC^2 - BE^2 = AC^2 - AE^2 = CE \cdot ED$，于是得$BE^2 - AE^2 = AB^2$，故$AB \perp AE$。

证法2（对称法）：如图3，直线AC, AD交于点A，$AB \perp BC, AB \perp BD$，分别在AC, AD上取点C, D，过A任作直线AE交CD于E点，延长BA至B，使得$BA = AB'$，联结BC, BD, BE, BC', BD和$BE'。显然，BC = BC'，BD = BD'，$\triangle BCD \cong \triangle B'CD$，$\angle BCE = \angle B'CE$，于是，$\triangle BCE \cong \triangle B'CE$，$BE = B'E$。因此，$AB \perp AE$，从而知则$AB$垂直于该平面。

![图3](image)

历史上还出现了循环论证。此外，中国古代数学家所使用的最基本几何模型——鳖臑也是定理教学中可以使用的材料。

3. 两节课的宏观比较

3.1 教学目标

两节案例的目标都含有：(1)掌握线面垂直的定义、性质与判定定理；(2)学会证明线面垂直判定定理；(3)了解定理的历史，提升数学学习的自信心，感悟数学文化。不同之处在于，A教师着重培养学生的直观想象能力、逻辑抽象能力、逻辑推理能力，体会化归的数学思想，让学生感受中国传统文化的魅力。B教师重在让学生了解历史上精彩的线面垂直证明的证明方法，培养逻辑推理能力，培育爱国主义情怀。

教学重点：线面垂直的定义、性质与判定定理；
教学难点：线面垂直判定定理的证明，求空间图形的有关距离。

3.2 教学过程

两位教师的教学过程均可分为新知引入、定义生成、证明探索、练习应用四个环节。具体过程如表1。

从表1可见，两位教师的教学设计各具特色。A教师从教数学本质以如何判断判断与“不直”的现实问题引出线面垂直判定定理学习的必要性。而B教师从视点出发引出的问题引出线面垂直的课题，通过观察纸折痕，探讨线面垂直的定义。A教师在探究第20页

<table>
<thead>
<tr>
<th>表1</th>
<th>A教师</th>
<th>B教师</th>
</tr>
</thead>
</table>
| **新知引入** | 从身高问题引入，用自然语言描述何为线面垂直。 | 1. 播放电影《哥白尼投案》，引发学生对线面垂直性的必要性。
 | | 2. 运用实际操作，靠近纸张的折叠与桌面的关系；
 | | 3. 展示生活中线面垂直的例子。 |
| **证明探索** | 让学生思考，如何用严格的数学语言将线面垂直。
 | | 1. 列举实例，探讨线面垂直的性质条件；
 | | 2. 探究：运用对称法证明线面垂直定理；
 | | 3. 探究：如何证明线面垂直定理定理；
 | | 4. 探究：线面垂直与线面垂直之间的关系；
 | | 5. 播放视频展示，展示数学史上的其他证明方法。 |
| **练习应用** | 通过习题，引出平面与平面相交模型。
 | | 1. 通过习题，引出平面与平面相交模型；
 | | 2. 通过习题，引出平面与平面相交模型；
 | | 3. 用符号语言描述线面垂直定理定理。 |
| **小结** | 通过习题，引出平面与平面相交模型；
 | | 1. 通过习题，引出平面与平面相交模型；
 | | 2. 通过习题，引出平面与平面相交模型；
 | | 3. 用符号语言描述线面垂直定理定理。 |

两位教师的教学设计也有一致的相似之处，如都从定理出发，探讨判定线面垂直所需的条件，且在定义证明的探究阶段都选择了对称法。在课堂练习部分，两位教师都采用了鳖臑模型。

4. 两节课的微观比较

我们从史料的适切性、融入的自然性、方法的多样性以及价值的深刻性四个维度对两节HMP课例进行比较。

4.1 史料的适切性

在HMP实践中，选择史料的原则有趣味性、科学
性、有效、可学性和人文性。本节从教学的四个环节分析教材的适切性。具体分析如下表所示。

表 A 和 B 教师分环节教材运用分析

<table>
<thead>
<tr>
<th>教学环节</th>
<th>A 教师</th>
<th>B 教师</th>
</tr>
</thead>
<tbody>
<tr>
<td>新知引入</td>
<td>教师运用了克莱罗的线面垂直定义，从人站在直立问题入，引入学生用严谨的数学语言对应克莱罗所定义的线面垂直。</td>
<td>教师运用了克莱罗对于线面垂直的判定方法，从影视片断中将如何折叠实际问题引入，通过实际展示，让学生在观察的过程中进一步感受克莱罗的判定方法。</td>
</tr>
<tr>
<td>定义生成</td>
<td>黑板上的证明，引导学生探究等腰三角形的同法定义，并通过做视频，展示了数学史上的多种定义方法。</td>
<td>引导学生定义对称法定义等腰三角形。通过做视频，展示历史上对定义间错误的证，并引导学生加以辨析。</td>
</tr>
<tr>
<td>证明探索</td>
<td>在练习环节中，选择等腰三角形，并将其底腰——甲肩所画的下底边长画到了图上。</td>
<td>教师在练习中学用等腰三角形，并通过做视频，向学生展示了数学史上等腰三角形的定义，并展示三者之间的动态联系。</td>
</tr>
<tr>
<td>练习与小结</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
采用了顺应式、复式和附加式。

4. 4 价值的深刻性

数学史融入数学教学主要有如下六类教育价值：知识之谐、方法之美、探究之乐、能力之助、德育之效、文化之魅。

在新知引入部分，两位教师分别从生活实例和影视片段出发，揭示了学习新知的必要性也让知识的产生更为自然。在线面垂直判定定理证明的探究环节，两位教师都搭建了适当的脚手架，帮助学生更顺畅地进行探究，而教学过程中，B 教师采用了几何画板，更加直观地展示了证明所需的图形，学生也更快地探究出结果。因而，B 教师的课堂探究环节更好地体现了知识之谐。

在探究环节中证明方法的选择上，A 教师采用了“点到线、等腰三角形法以及对称法三种证明方法，充分体现方法的多样性。而 B 教师只选用了对称法。因而，A 教师的探究设计能更体现方法之美。

两节课教师都给予学生大量的时间探究，由于教师充分搭建脚手架使学生的探究更具方向性和目的性，因此学生基本都能达到预期的探究目的，得出相应的证明方法。探究的内容需要学生调动其直观想象、逻辑推理等能力。由此可见，两节课都体现了探究之乐以及能力之助的价值。

两节课都在课堂中渗透了德育，具体的教学片断如下：

（一）A 教师的教学片断

师：（教师站立）同学们看我，我现在和地面是垂直的吗？

生：是。

师：一定是垂直的吗？没有歪一点吗？

生：不知道了。

师：不知道了吧？因为数学上要说明线面垂直的话一定是呈 90°，光凭我们直观的感觉是不行的，必须进行严格的数学证明。接下来，我们就要学如何判断直线和平面垂直。

分析：本片断中，教师以自身为例说明，要想判断其与地面是否垂直，光凭观察是不够的，更需要严谨的证明，在体现数学严谨性的同时，也渗透了言必有据的道理。

（二）B 教师的教学片断

第 22 页

教师通过微视频播放数学史上的循环证明方法，并让学生辨析其错误。而后微视频中说道：“此证明是由数学家斯图尔特于 1891 年在《平面与立体几何》中所给出的错误证法。”

师：震撼吧！没想到这样一个证法并非某个粗心的学生给出的，而是一位数学家给出的。这说明了什么？

学生沉默。

师：（这说明）大家都会犯错误，所以同学们若是平时在生活中或学习上，特别是数学方面，偶尔碰上一点小小的挫折，千万不要气馁，你们要对自己有信心。每个人都会犯错误的！你看这位数学家犯的错误都发表出来了，而且，现在大家都很厉害，都能够把数学家的错误找出来。其实，在历史中，除了之前提到的证法，还有一系列精彩的对于线面垂直的证法。为什么这么多呢？是因为不同的数学家总是想追求完美，精益求精。哪怕是前人已经给出了正确的证法，还是有数学家认为不够完美，希望证明得更加简单，于是不数不钻研，很多数学家都在尝试。于是，历史上有不少的证法。可能有些错了，有些正确，有些麻烦有些简单。但无论怎样，数学家的这种精神都是值得我们学习的。

分析：本片断中，教师通过展示历史上曾出现的错误证明方法，说明数学是人的文化活动，凡是人就都有犯错的可能。以此为契机，鼓励学生要有自信，遇到困难挫折不气馁。此外，还强调了正是由于众多的数学家们不满足于已有的证明方法，不断探索不断钻研，才使得线面垂直判定定理的证明精彩纷呈。虽然这些方法都不一定是最好的，但数学家的精神值得后人学习。这里，教师特别关注了数学史的德育价值。

两位教师分别从数学的严谨性和数学背后的人文精神两个维度展现了数学史的德育价值。

此外，两位教师都使用了技能这一模型，并从两个角度展现了数学的文化之魅。教学片断如下：

（一）A 教师的教学片断

师：（指着练习题中的图形）大家看这是个什么图形？

生：这是三棱锥。

师：这是一个四面都是直角三角形的三棱锥！

生：哦？
师：我们把这样的三棱锥叫做鳖臑。鳖就是我们常吃的甲鱼，臑是指动物的前肢，它是什么命名的呢？实际上源于甲鱼的前肢骨。
教师取出甲鱼的前肢骨，让学生观察。
师：大家看这个前肢骨，是不是有四个顶点，我们把四个顶点连接起来，就是一个三棱锥。我特地去做了一只红烧甲鱼！
生：哇哦！
师：我儿子说很好吃！所以说学习数学好处很多，除了可以增长智力还可以品尝美食！
生：（笑）
评析：在本片段，教师通过习题以及实物让学生了解四个面为直角三角形的立体几何模型古称鳖臑，名称源于甲鱼前肢骨，充分体现了数学与生活息息相关，调动学生的兴趣和学习激情。
(二)B教师的教学片段
教师通过微视频介绍了鳖臑、阳马、鳖臑三个中国古代的重要立体图形并演示了它们之间的动态联系，学生认真倾听。
师：是不是很神奇？前面我们在说判定定理的时候介绍了很多国外数学家的证明方法，但其实中国的数学家们也很有趣，它们往往不仅在古代，刘徽以及很多其他数学家，也对几何学做出了重要的贡献，大家是不是也觉得我们中华文化博大精深，值得我们感到骄傲！
评析：本片段中，教师介绍了中国古代三个重要的立体图形之外，还强调了文化的多元性：各国都有数学，不同国家、不同时代的数学家对数学知识体系做出了贡献，同时教师也提出身为国人应当为中华民族拥有博大精深的文化而感到自豪。
两节课都使用了鳖臑模型，但分别从数学与生活的关系以及多元文化两个方面展现了文化之魅。
5. 结语
通过上述分析比较我们可以看出，两位教师都从HPM视角出发，精心设计了教学过程。在史料的选择上基本符合趣味性、可学性、科学性、有效性。B老师在数学中关注了数学史上的数学家曾犯过的错误，还强调了数学家们对数学问题不断探索不断钻研的精神，因而更符合人文性；两位教师在史料融汇上都比较自然，且在方法选择上都采用了顺应式、复式制和附加式，A教师还运用了重构式。就教育价值而言，两位教师都在引出证明方法的过程中搭建了适当的脚手架，并给予学生充分的时间去探究定理的证明，展示了知识之趣，并通过探索过程培养学生直观想象和逻辑推理等能力。由于A教师选用的证明方法更多，在这一环节花费的时间更长，所以更能体现方法之美。两节课所展现的教育元素也有所不同，A教师更注重的是通过数学的严谨性来说明求实务实、言必有据的重要性。而B教师则通过数学家所犯的错误，让学生认识数学活动的本质，帮助学生树立自信心，鼓励学生遇到困难和挫折时不胆怯不气馁；以及向学生揭示数学家们执着探究、不断钻研的精神。两位教师都通过鳖臑模型，展示了数学文化的魅力。A教师更多地体现了数学与生活的密切联系，而B教师则更关注文化的多元性。
通过两节课的比较和分析我们可以得出以下启示：
(1) 注意搭建脚手架，适当使用多媒体
在教学过程中，直接将历史上数学家外用过的证明方法用于探究，可能难以想到从何入手，因此，教师应恰当地搭建脚手架（如本课例中的对称点的构造），使探究内容触及学生的能力边缘，让学生能够有效地进行探究，从而达成教学目标。此外，对比两堂课不难发现，由于B教师在探究环节采用了几何板直观展示图形，因此，学生探究的效率明显更高。可见，在几何证明中，技术为HPM插上翅膀，适当运用几何板等作图工具，能帮助学生更好地理解图形。另外，适当的加入微视频，也可使数学史融入的方式更加多元。
(2) 适当运用错误证明方法
教师在选用数学史料时，除了着眼于历史上的经典证明外，也可适当从历史上数学家的错误入手，让学生体会数学和数学活动的本质；数学知识并非既定真理，而是在不断发展中逐步走向完善；数学家也会犯错误，诚如歌德所言，谬误之于真理，就像睡梦之于清醒一样。由此，可以让学生正确看待自己在学习过程中所遇到的困难。
(3) 注重数学史教育价值的多元化
数学命题的教学中，教师往往只关注知识本身，强调对命题的理解和对证明的掌握，A.B两位教师的数学很好地证明，数学史赋予了数学更多的人文元素，在揭示数学的德育价值和文化价值上，具有独特的优势。因而，数学史的融入是数学教学中落实立德树人根本任务的有效途径之一。